Note to Notre Dame International Security Center:

The attached paper is part of a broader project titled “Choosing Terror: Rebels Use of Terrorism in Civil Wars 1970-2014.” My presentation for Tuesday’s seminar will cover two aspects of the broader project: this paper on whether “Terrorism is a Weapon of the Weak,” as well as more preliminary work from ongoing research on “Government Abuse and Terrorism.”

I am also enclosing supplemental material describing in more detail the data on Terrorism in Armed Conflict (TAC) used for both parts of the project.

I very much look forward to your thoughts and comments on all aspects of the project,
Page Fortna
Is Terrorism Really a Weapon of the Weak?
Testing the Conventional Wisdom

Page Fortna
Columbia University

Draft: February 2017

Please do not cite without permission
Comments very welcome:
vpf4@columbia.edu

Acknowledgments
Thanks to participants at the Rice Workshop on “Actors, Tactics, and Strategies in Intrastate Conflicts” Rice University, Max Abrahms, and Tanisha Fazal for comments and suggestions. Thanks to David Cunningham and to Nils-Christian Bormann for information on measures in the CGS and ACD2EPR datasets, respectively. Special thanks to Mike Rubin and Nick Lotito for help with data, and to Laura Resnick for research assistance.

Abstract
The idea that terrorism is a “weapon of the weak” is such a deeply held conventional wisdom that it has become almost a cliché in the terrorism literature. “Weak” means many different things in the literature, however, and little rigorous empirical research has tested directly the contention that weaker groups, however conceived, are more likely to employ terrorism. This article explores prominent weapon of the weak arguments to develop specific hypotheses about group strength and the prevalence of terrorism. It uses new data measuring the use of deliberately indiscriminate attacks on civilians by rebel groups in civil conflicts, as well as multiple measures of rebels’ strength, to examine systematically whether weaker groups are more likely to employ terrorist tactics. Some variants of the weapon of the weak argument fare better than others, but generally there is surprisingly little empirical support for the conventional wisdom. Terrorism may not in fact be used more by weak groups than by strong ones.
Terrorism is frequently said to be a “weapon of the weak.” Indeed, this conception is so common in the terrorism literature that it goes beyond conventional wisdom into something of a cliché. However, very little empirical work has tested the notion that weaker groups are more likely to employ terrorism than stronger ones; it is simply taken as a given. Is the truism that terrorism is a weapon of the weak true?

When people say that “terrorism is a weapon of the weak,” what they mean by “weak” varies. I explore prominent arguments to develop specific hypotheses about strength and the prevalence of terrorism. These are tested by examining terrorism in the context of civil conflicts, using new data on the terrorism by rebel groups from 1970-2013. Rebel groups vary in their use of terrorism, providing empirical leverage that much of the terrorism literature sorely lacks.

After a brief discussion of what I mean by the term “terrorism,” I turn to what people mean when they say that “terrorism is a weapon of the weak” and develop testable hypotheses. Next, I explain the research design and data, and then present the findings. While some variations of the argument fare better than others, I find remarkably thin support for the deeply held conventional wisdom that terrorism is a weapon of the weak. Given the ubiquity of the claim in the academic literature, in policy discussions, and in journalism, this null finding is substantively important.

Defining “Terrorism”

Because it is such a loaded term, defining terrorism is notoriously contentious; as another

1 Thornton 1964, p.89 credits Crozier (1960, p.191) for the “oft-repeated dictum.”

cliché goes, ‘one person’s terrorist is another’s freedom fighter.’ This is perhaps particularly true in the context of civil wars.\(^3\) The term is also often used inconsistently, with attacks on political enemies labeled “terrorism,” while similar attacks by others get referred to in other ways. A clear and consistently applied definition is thus crucial.

For the purposes of this paper, I define terrorism as *the use of intentionally indiscriminate political violence against public civilian targets*. This definition is narrower than many in the literature that arguably encompass all attacks by all rebel groups in all civil wars,\(^4\) but broader than those that draw a mutually exclusive distinction between terrorism and guerilla warfare or insurgency. In an overly broad definition all rebels are considered terrorist, while in an overly narrow one none are, precluding the examination of terrorism in civil wars.

Like many, but not all definitions of terrorism, mine focuses on deliberate attacks on civilians, as opposed to attacks on military and state targets that all rebels conduct by definition. I narrow the definition further to exclude types of violence against civilians that almost all rebel groups (and almost all governments involved in civil wars) engage in, specifically, violence to induce civilian cooperation and to deter collaboration with the enemy.\(^5\) Much of the civilian targeting literature, including prominent work by Weinstein and Kalyvas,\(^6\) focuses on this type of

\(^3\) On definitions, see McCormick 2003, p.473; Merari 1993; Stohl 2007.

\(^4\) Much of the terrorism literature uses the terms *terrorism* and *rebellion* or *insurgency* interchangeably (e.g., Berman 2009), or could do so with no loss of meaning (e.g., Hoffman 2006, p.40).

\(^5\) Stanton 2016, pp.44-45 refers to this as a strategy of ‘control.’ Kydd and Walter 2006, pp.66ff term it ‘intimidation.’

violence, which is ubiquitous in civil wars,⁷ but is not what we normally think of as “terrorism.” Focusing instead on deliberately indiscriminate violence, I seek to capture that which makes terrorism so terrifying – its randomness – and so abhorrent – the explicit, even intentional innocence of its victims.⁸

This definition focuses on the tactics used by organizations, the types of attacks they carry out – not the cause for which they fight. Some groups who employ acts of terrorism (such as the ANC) might thus be considered morally preferable to some non-terrorist groups. Rebel groups may be “terrorists” and “freedom fighters” simultaneously.⁹

This focus on indiscriminate violence against civilians might be critiqued as too narrow, for it leaves out some attacks that we do commonly think of as terrorism, e.g. assassination of public civilian figures. It also excludes attacks such as the discriminate targeting of Charlie Hebdo in January 2015 (as opposed to the attack in Paris in November 2015, which would be included under this definition). Discriminate attacks target individuals seen as culpable in some way in the eyes of the attacker and potentially to others as well. It is an open question whether such attacks on public figures have the same causes or effects as deliberately indiscriminate attacks on random civilians. While it makes sense for some research purposes to include these discriminate attacks on civilians in the definition of terrorism, I exclude them here for two reasons. First, there is not necessarily a bright line between such attacks and those on “ordinary”

⁸ This is not to condone the targeting of perceived collaborators, only to distinguish it from deliberately indiscriminate violence against civilians.

⁹ Here I examine terrorism by non-state actors, but nothing in the definition precludes referring to deliberately indiscriminate targeting of civilians by states or governments as terrorism.
collaborators, making it difficult cleanly to separate terrorism from this more ubiquitous type of violence. Second, some claims that terrorism is a weapon of the weak hinge specifically on the capability of a group to discriminate. Focusing only on indiscriminate violence should thus make for an easier test of the argument (and a harder case for debunking it).

Terrorism in the Context of Civil Wars

Civil conflicts provide a useful testing ground for arguments about terrorism. Rebel groups constitute a universe of comparable cases – all motivated by serious political grievances, organized, and willing to use violence against the existing political order – across which the phenomenon of interest varies. Data on civil wars are also relatively well developed.

There is, however, a drawback to testing weapon of the weak arguments in the context of civil conflicts; it selects organizations that are strong enough to show up in data sets on armed conflicts. The very weakest groups are thus omitted. This study ameliorates the problem in two ways. First, it employs as low a threshold of violence as possible with existing systematic data. All groups involved in conflicts causing as few as 25 battle deaths in a year are included. Second, it examines groups that eventually meet this threshold even in years in which they do not. An examination of groups who never meet this threshold is not possible because we do not have an appropriate comparison category. Existing databases of terrorism allow us to identify the very weakest groups who **do** use terrorism, but not those who **do not**. Nonetheless, this

10 Fortna 2015.

11 Until recently, much of the terrorism literature examined only organizations that employ terrorism, making it difficult to test hypotheses about its causes or effects.
limitation poses an important scope condition on the conclusions that can be drawn from this study.

Hypotheses: What Does it Mean to Say that “Terrorism is a Weapon of the Weak”?

The phrase “weapon of the weak” is bandied about in the terrorism literature, but not everyone means the same thing by it. Below, I unpack the main ways in which the concept is used, drawing out their empirical implications.

Weakness is implicitly baked into some conceptions of terrorism. This is particularly true of attempts to distinguish it from insurgency or civil war by labeling as terrorism only low levels of violence conducted by smaller groups too weak to wage full-blown insurgency.\(^\text{12}\) As Merari puts it, “One might say, that all terrorist groups wish to be guerillas when they grow up.”\(^\text{13}\) Sánchez-Cuenca and de la Calle explicitly define terrorism by the inability to control territory.\(^\text{14}\)

If terrorism is defined as violence perpetrated by groups too small or weak to wage civil war, then any attempt to explain terrorism with reference to group strength is tautological. By these definitions, we would also not be able to refer to deliberately indiscriminate attacks by groups like ISIS, or by the Tamil Tigers in Sri Lanka, as “terrorism.” Definitions that limit use of the term terrorism to non-state actors contribute to the tautology problem. Non-state militant organizations are almost always weaker than the governments they oppose. If only non-state

\(^{13}\) Merari 1993, p.245.

\(^{14}\) Sánchez-Cuenca and de la Calle 2009, p.34.
actors use terrorism, then it is a weapon only of the weak almost by definition.

However, non-tautological arguments about the relationship between strength and the proclivity to use terrorism can be drawn out of the literature. In its most general sense, the notion that terrorism is a weapon of the weak refers to the fact that it is employed by groups less powerful than the opponent they fight against. “Terrorism is the poor man’s airforce” as the saying goes. Sometimes this is used as a justification for terrorism. For example, Sayeed Siyam of Hamas justified suicide bombings by saying: “We do not own Apache helicopters ourselves, so we use our own methods.” Or as Peter Ustinov quipped: “Terrorism is the war of the poor, war is the terrorism of the rich.” While this may be an accurate description of how terrorist groups justify their actions to themselves and others, it does not explain variation in the use of terrorism by rebel groups, because virtually all opposition groups are considerably weaker than the governments they face. Very few rebel groups own Apache helicopters, yet not all of them resort to terrorism.

Nonetheless, there is variation in the extent to which rebel groups are weaker than their opponents. The most straightforward empirical implication of the weapon of the weak argument is the following hypothesis:

\[H1: \text{The weaker rebels are militarily, relative to the government, the more they will employ terrorism.} \]

Wood (2014b) suggests a countervailing logic in which rebels with greater military strength are more capable of killing large numbers of civilians. Both dynamics could be true:

\[\text{__________________________} \]

15 Quoted in Sontag 2002.

H1a: Stronger rebels are less likely to use terrorism, but are able to kill more people if they do so.

As part of relative capability, others focus on state capacity, arguing that we observe terrorism in stronger states because in weaker ones the opposition can mount a (non-terrorist) guerilla campaign, or speculating that inefficient and poorly equipped government forces allow rebels to wage effective guerrilla campaigns, obviating the need for terrorism.

H2: Rebels facing more capable states will employ more terrorism.

Note that the popular notion that state failure leads to terrorism suggests just the opposite.

By a similar logic, Laitin and Shapiro argue that groups who enjoy favorable conditions for insurgency, such as rough terrain, should be less likely to resort to terrorism.

H3: Rebels fighting on rough terrain will use less terrorism.

Some see a link between territorial control and the targeting of civilians. Sánchez-Cuenca and de la Calle argue that terrorism is more likely by groups who lack territorial control and less likely against weaker states that cannot prevent loss of territory to rebels. Kalyvas also argues that indiscriminate violence against civilians is more likely by groups that do not control

17 Sánchez-Cuenca and de la Calle 2009, p.39. See also Hendrix and Young 2014.
18 Laitin and Shapiro 2008, p.213.
19 Coggins 2015.
20 Laitin and Shapiro 2008, p.213.
21 Sánchez-Cuenca and de la Calle 2009, p.32.
territory effectively. These arguments suggest that, whether as a proxy for military strength or its own causal factor:

\[H4: \text{Rebels who control territory are less likely to use terrorism.} \]

For others it is “weakness” in terms of popular political support that matters; those with fewer supporters do not have “safety in numbers” and so turn to underground tactics such as terrorism rather than pursuing other forms of dissent. Insurgency is also arguably an “underground” form of dissent, so this argument, like many in the terrorism literature may be an explanation of violence or civil conflict more than one of terrorism per se. But it is plausible to think that those opposition groups with the least popular support turn to terrorism rather than insurgency out of desperation or because the latter requires more manpower.

\[H5: \text{The less popular support a rebel group enjoys, the more terrorism it will use.} \]

Relatedly, many scholars argue that terrorism is used not only to coerce an opponent but also to mobilize support, particularly in the early stages of a conflict, before “graduating” if

\[\text{---} \]

22 Kalyvas 2006. Kalyvas focuses, however, on violence to control collaboration, which is outside my definition of terrorism.

23 DeNardo 1985, p.230; McCormick 2003, p.483; Crenshaw 2011, p.41-2; Bueno de Mesquita 2013. See also Lake 2002.

24 Lins de Albuquerque 2014; Sánchez-Cuenca and de la Calle 2009, p.44; Della Porta and Tarrow argue that terrorism rose in Italy as mass protest declined (1986, pp. 620 & 628).

possible, to guerrilla warfare, and ultimately to conventional warfare.26 Others suggest that terrorism will be used early in a conflict to destabilize the government and prepare the way for revolution.27

\textit{H6: Terrorism is more likely in early stages of a conflict.}

Note that if terrorism is used to mobilize support, the causal arrows between strength and terrorism may run both ways: if initial weakness leads to terrorism, but terrorism leads, assuming this mobilization strategy works (an open empirical question) to increased strength.28

Finally, some argue that groups turn to mass killing and civilian targeting when they are losing, as a way to signal resolve and raise the opponent’s cost for winning,29 out of desperation in the face of defeat, or later in the conflict, after other methods fail.30

\textit{H7a: Terrorism is more likely by groups that are on the verge of defeat.}

\textit{H7b: Terrorism is more likely in later stages of a conflict.}

Surprisingly little empirical work has evaluated the effect of strength, conceived of in any of the ways outlined above, on terrorism. The conventional wisdom is largely taken for granted.

\begin{thebibliography}{9}
\bibitem{McCormick} McCormick 2003, p.485; Bueno de Mesquita 2013, p.20; Cronin 2006, p.32. This notion is from Mao 1961(1937). However, Mao explicitly argues against terrorism (as defined here) as a tactic for successful revolution.
\bibitem{Crenshaw} Crenshaw 2011, p.118; Neumann and Smith 2005, pp.577ff; Thornton 1964 pp.90ff.
\bibitem{Lake} Lake 2002.
\bibitem{Hultman} Hultman 2007. See also Wood 2014a, though his argument emphasizes controlling collaboration, not terrorism as defined here.
\bibitem{Downes} Downes 2008; Wood 2010; Crenshaw 2011, p.113. Valentino et al. 2004; Della Porta and Tarrow 1986.
\end{thebibliography}
Those studies that do examine this relationship empirically (sometimes only in passing), come to somewhat contradictory conclusions.

Stanton provides empirical support for the general argument (H1) that terrorism is a weapon of the militarily weak, but Salehyan et al. find that stronger groups are associated with an increase in civilian targeting, while others find no effect of rebel strength on terrorism. Results are similarly contradictory on the effect of state capacity (H2). Chenoweth provides indirect support in favor, and Hendrix and Young find state military capacity increases terrorism, but that state bureaucratic capacity has the opposite effect. Coggins finds no effect of state failure on terrorism.

The rough terrain hypothesis (H3) has not been explored in detail, though Fortna found it to have little effect on terrorism. Territorial control has been found to decrease both civilian and indiscriminate targeting (H4), but also associated with more lethal terrorism.

To my knowledge, have there been no empirical cross-national studies of the relationship

31 Stanton 2013. See also Metelits 2010.
33 Goodwin 2006; Fortna 2015; Fazal 2013.
34 Chenoweth 2010.
35 Hendrix and Young 2014.
36 Coggins 2015. At the highest levels of state failure – political collapse – she observes greater terrorism. But in these cases all manner of political (and non-political) violence is likely to rise.
37 Fortna 2015.
39 Asal and Rethemeyer 2008.
between popular support and terrorism (H5). Findley and Young find less terrorism in the period before civil war than during it, contra H6. In line with H7, Hultman and Wood both find battlefield losses associated with greater civilian targeting, while Valentino et al. argue that groups turn to mass killing when conventional means fail. However, Stanton finds that with few exceptions groups who use terrorism as a systematic tactic do so throughout the conflict.

The lack of consistent findings suggests that the relationship between rebel strength and terrorism requires further analysis. Moreover, many of the most systematic studies listed above examine civilian targeting writ large. The dynamics of violence against civilians to control collaboration among the population and those of deliberately indiscriminate targeting of civilians may be rather different. The empirical literature is further hindered by a tendency to conflate the effects of strength on terrorism specifically with effects on political violence more generally. By examining terrorism in the context of civil wars, this study isolates the effects of strength on tactical choice more cleanly. Doing so should make it easier to observe support for weapon of the weak arguments, as the negative effect of strength on terrorism will not be crowded out by the positive effect of strength on political violence or the likelihood of civil conflict more generally.

Beyond the lack of clear empirical support, there is a theoretical gap in the link between strength and terrorism. The implicit logic behind weapon of the weak arguments is often that

40 Findley and Young 2012. Given that GTD includes many incidents that could be characterized as civil war violence, this could simply be picking up the overall escalation of violence, however.

42 Stanton 2016. [add p.#]
terrorism is relatively cheap and easy, so weak groups can afford to carry it out, even if they are less capable of employing other types of tactics. But if terrorism is cheap and easy, then all groups should engage in it. Terrorism may be all that some groups can accomplish, but there is little reason to think that stronger groups should avoid its use. To explain why weak groups would use terrorism but strong groups would not, terrorism must either be less costly or more beneficial for weak groups than for strong ones. Most weapon of the weak arguments have not made such a case. If terrorism entails high legitimacy costs, then perhaps only those desperate in the face of defeat (H7) risk it in a gamble for resurrection. Similarly, the logic of H5 might be fleshed out by arguing that groups with little popular support to begin with will be less constrained by the legitimacy costs of terrorism. However, this contradicts the notion that groups use terrorism in order to generate popular support when it is lacking.

The terrorism literature is littered with assertions that terrorism is a weapon of the weak, but the theoretical logic of this link is generally not well spelled out, nor is there yet clear empirical evidence for the claim.

Data and Research Design

I evaluate terrorism by rebel groups (aka violent non-state actors) in intrastate armed conflicts from 1970-2013. The Terrorism in Armed Conflict data set (TAC) draws on the Global Terrorism Database (GTD) to measure terrorist incidents attributable to opposition groups in the 2014 Uppsala Conflict Data Program’s dyadic data on intrastate wars (UCDP). TAC covers

\[43\] Fortna 2015.

\[44\] LaFree and Dugan 2007; START 2016; Harbom et al. 2008; Themnér and Wallenstein 2014.
467 rebel groups in 180 conflicts in 101 countries. The main unit of observation is the active dyad-year, of which there are 2,069. GTD data are missing for 57 active dyads in 1993, for an N of 2,012.45

One outlier and deserves discussion. UCDP codes the conflict between the US and al-Qaida, starting with the attacks of 9/11, as an (internationalized) intrastate conflict. Unlike the other intrastate conflicts in UCDP, al-Qaida is not an “internal opposition group” in the United States, and this conflict is not a civil war. Other cases of transnational terrorism (apart from a domestic conflict) are not included in the UCDP data. I include this conflict in the main analyses reported below (but drop it in robustness tests) because doing so biases in favor of the weapon of the weak hypotheses. The US is the most powerful state in the world, and al-Qaida is accordingly coded as much weaker than its adversary, with low fighting capability, controlling no territory, and is responsible for high levels of terrorism.

Dependent Variable

Determining which incidents in GTD can be attributed to which rebel groups in UCDP is complicated. TAC provides a much more systematic and flexible matching of UCDP groups and GTD perpetrators than is used elsewhere in the literature, allowing researchers to use varying levels of inclusion for what constitutes a match. Here, I use version B, which counts perpetrators deemed direct matches, armed wings, and factions or umbrella organizations; and version E which also includes allies and affiliates, connected groups for which the relationship is unclear or

45 TAC also includes measures of terrorism for inactive conflict years, before, after, and during lulls in the conflict, as described below, covering 5,182 dyad-years. Unless otherwise noted, analyses below use only the years in which UCDP codes a conflict as active.
changes over time, and the many perpetrators in GTD listed only by a generic descriptor, so long as it applies to the group in question (e.g. “Kurdish separatists” vis a vis the PKK).

TAC filters GTD, which defines terrorism very broadly, for incidents that fit the narrower definition used here. It excludes attacks against military or government targets, and uses information on attack and target type and subtype to identify deliberately indiscriminate attacks. I examine results for both TAC’s less and more restrictive measures of terrorism.46

TAC also counts terrorism in several different ways, including, among others, measures for the number of incidents in a year, and the total number of fatalities. As Young points out, how we conceptualize the “amount” of terrorism – as incidents or as fatalities or in some other way – can have significant implications for our findings.47 And as we will see below, results on weapon of the weak hypotheses sometimes differ across these two metrics. In all, I examine results for eight different versions of the dependent variable: all combinations of versions B vs. E of the actor matching, more vs. less restrictive measures of deliberately indiscriminate attacks, and incidents vs. fatalities.

Figure 1 shows the distribution of the dependent variable. Counts of both terrorist incidents and fatalities are shown (for version B, least restrictive). Contrary to popular perception, terrorism is more the exception than the rule. In 55% of active dyad-years there are no terrorist incidents, and in 63% there are zero fatalities from terrorism. When it does occur, it tends to be at low levels. In 22% of dyad-years the number of incidents is between one and five,

46 See [author identifying citation removed] for details. [relevant excerpts provided in supplemental material for reviewers]

47 Young 2014.
and in three-quarters of active dyad-years the number of people killed in terrorist attacks is fewer than ten. But the tail of the distribution is quite long. The maximum number of incidents in a single dyad-year is 286 (Syrian insurgents 2013). Other high incident counts are ISIS in Iraq in 2013 (268), and Sendero Luminoso in Peru in 1984 (250) and in 1991 (243). In the fatalities distribution, Al-Qaida in 2001 is an outlier at 2,793. The only other dyad years to top 1,000 fatalities line up with the high incident counts.

The distributions are of course skewed even more toward zero when the more restrictive measure of terrorism is used (i.e., when more incidents are filtered out of GTD as unlikely to be deliberately indiscriminate), and less toward zero when generic descriptor perpetrators are included in the counts (version E).

[Figure 1 about here]

Independent Variables

To test the most straightforward weapon of the weak argument (H1), I use two variables from Cunningham, Gleditsch, and Salehyan’s (CGS) Non-State Actor data set. The first measures rebel strength relative to the government as a composite of three factors: relative ability to mobilize supporters, to procure arms, and fighting capacity. I use both the original 5-point ordinal scale from much weaker to much stronger, and separately, dummy variables to compare

\[\text{48}\text{UCDP’s dyadic data do not distinguish among various groups involved in the Syrian insurgency, thus inflating this count relative to other conflicts in which groups are counted separately. Other conflicts where multiple groups are lumped together include Kashmir, the Sikh insurgency in India, and the Patani insurgency in Thailand.}\n
\[\text{49}\text{Cunningham, Gleditsch, and Salehyan 2009; 2013.}\]
much weaker groups (42% of active dyad-years), and the few groups (6%) at parity or stronger, to the modal category of weaker groups (44%). CGS data run through 2010. The second is the fighting capacity component on its own. It is measured on 3-point scale: none or low (71% of active dyad-years), moderate (18%), and high (<1%). This is the measure perhaps most vulnerable to endogeneity in the coding. If coders believed the conventional wisdom that terrorism is a weapon of the weak, it is possible that they (perhaps only sub-consciously) downgraded their assessment of the fighting capacity of groups that employ significant levels of terrorism.

To measure government capacity (H2), I follow Hendrix and Young, who find support for the “weapon of the weak” argument when state capacity is conceived of as military capacity, but not as bureaucratic/administrative capacity (which they argue deters or represses terrorist activity). Like them, I use the natural log of the Correlates of War (COW) CINC measure of the state’s share of global military capabilities. I also examine COW’s measures of military personnel and spending, again, taking the natural log. COW data run through 2007. The larger these measures of state capacity, the relatively weaker are rebels.

The PRIO-GRID spatial data and the PRIO Conflict Site Dataset provide two conflict-
level measures of rough terrain (H3): the percentage of the conflict area that is mountainous (ranging from 0 to 96% with a mean of 37.5%), and the percentage that is forested (0 to 88.5% with a mean of 25%). These variables are inverted so that higher values indicate terrain that is less rough or more accessible, thus undermining rebels’ advantage. H4 is tested with CGS’ measure of rebel territorial control (inverted so that 1 denotes lack of control). Rebels control territory in 38% of active dyad-years and do not in 53% (data missing in 9%).

I use two measures of rebels’ popular support (H5): the CGS measure of mobilization capacity is based on the size of the group rebels represent and connection with the local population (as opposed to dependence on external support). I examine both the 3-point ordinal variable and dummies comparing low (56%) and high (5%) to moderate (38%) levels. Second, for ethnic conflicts only, ACD2EPR’s coding of whether a majority of the relevant ethnic population supports the rebels (true of 65% of ethnic conflict dyad-years).

To test whether groups are more likely to resort to terrorism early in their struggle (H6), I include a measure of the time since the conflict began, inverted so that higher values denote younger conflicts. I count from the year of the first battle-related death, not the year that it crossed the threshold to 25 battle deaths. If a group truly targets (almost) only civilians at the start of its struggle (as a strong version of this hypothesis and the ‘terrorists hope to grow up to be insurgents’ argument would suggest), these early years will not be captured in the data.

54 Email correspondence with David Cunningham, 1/30/17.

55 Vogt et al. 2015.

56 This measure is based on the overall years the dyad is in UCDP, the count does not stop if there is a pause or a lull in which the conflict falls below 25 battle deaths for a period before resuming. It ranges from -52 to 0 with a mean of -10 years.
because only years with >25 battle deaths are considered active (civilian targeting is excluded from battle deaths). In other words, the terrorist phase of the conflict occurs in the years prior to those analyzed, potentially biasing results away from H6.

To remedy this problem, I examine TAC data for years before and after (and during lulls in) the active UCDP years. For all groups, the years between the first battle death and the year the 25 battle death threshold is crossed are included (604 dyad-years). In conflicts where there is an obvious match between a UCDP group and a perpetrator in GTD for an incident prior to the UCDP start year, TAC measures terrorism starting in the year of the GTD incident. This yields 170 additional dyad-year observations (in 42 dyads) that occur before even the first UCDP battle death in the relevant conflict. The inclusion of these prior years thus “selects on the dependent variable” as TAC includes them only for groups that used terrorism prior to the UCDP start date. This biases analyses of the prewar years toward finding support for H6. Because some control variables are coded only for active years, multivariate analysis of the prewar years is not possible, but bivariate analysis further tests the notion that terrorism is used early in a conflict.

Measuring whether a group is on the verge of defeat (H7a) is difficult without finer-grained data on battle outcomes or the trajectory of conflicts than are now available. As a rough proxy, I code years in which rebels are defeated, and alternatively, those that are within 1 and 2 years of a rebel defeat. I create two measures of “defeat” – one includes only the 85 cases coded in UCDP’s Conflict Termination dataset as victory for the government side; the other

57 Hultman’s (2007) data on battlefield losses cover only 2002-2004, while Wood’s (2014) cover only post-Cold War conflicts in Africa.

58 Kreutz 2010.
also includes cases in which the war ended in “low activity” as this often denotes rebels who quit fighting because they have been largely defeated though not eliminated outright (312 cases fit this more expansive definition of defeat).59 If the gambit of resorting to terrorism is successful for groups otherwise on the verge of defeat, it should make that defeat less likely. This measure will thus miss the very cases where it succeeds. However empirical examples of this phenomenon are lacking. I nonetheless use an alternative (though also imperfect), measure: the number of years from the end of the conflict (inverted so that higher values denote proximity to the end), to ascertain whether terrorism is more likely at later stages of a conflict, after other types of tactics have failed to achieve a group’s political goals (H7b).60

Controls

I control for several factors that might drive both the relative strength of rebels and the prospect that terrorism is used. Regime type is thought to shape both the ability of states to repress terrorism effectively and the ability of rebel movements to recruit supporters.61 My regime type measure fixes two limitations with the commonly used Polity scores: using Vreeland’s XPolity method to remove the components of Polity “contaminated” by the presence

59 Single conflicts can have multiple terminations if the fighting stops and restarts. Cases for which UCDP codes a termination but not the outcome were coded with supplementary research.

60 This measure counts years to the next termination coded by UCDP, not the final termination if the war restarts. It ranges from -29 to 0, and is missing for conflicts that were ongoing as of 2014.

61 For a review of the literature, see Chenoweth 2013.
of a civil war; and following one of Plumper and Neumayer’s suggestions to handle “interregnum” years (rather than arbitrarily set them to 0 as does Polity2). This modified XPolity score ranges from -6 to 7.

External support for rebels also has a direct effect on their relative strength, and has been argued to affect their incentives to turn to terrorism. A dummy variable, derived from the UCDP External Support Data captures whether the rebels received support (including funding, weapons, access to territory, etc.) from any external party (states, diasporas, etc.). Rebels received support in 44% of active dyad-year observations.

A control for the incompatibility over which the war is fought, government vs. territory, is from UCDP. More violent conflicts are likely to see more incidents of all kinds, including terrorism. Stronger groups are likely to be involved in larger and more intensive conflicts, so failure to include this measure would bias away from weapon of the weak arguments. I thus control for the intensity of the fighting using UCDP’s distinction between years of major war (battle deaths > 1,000) and minor armed conflicts (25-999 battle deaths).

Finally, I control for time period. A dummy for 1970-1989 takes into account the fact

62 Plümper and Neumayer 2010. I set “interregnum” years to the lower of the non-missing Polity observations before and after the missing period, and then interpolate “transition” years (following the Polity2 method).

63 Vreeland 2008.

64 Salehyan, et al., 2014.

65 Högbladh et al., 2011. I include alleged as well as confirmed support.

66 In robustness tests I also use a more fine-grained measure of annual battle deaths. Data (through 2008) from Lacina and Gleditsch 2005. Where a “best estimate” is missing, I average the low and high estimates.
that the Cold War shifted the relative resources available to governments and rebels.67 Other period controls are included because GTD changed its data collection procedures somewhat as the project was transferred among institutions in 1998 and again in 2008.68 The omitted comparison category is 1990-1997.

In robustness checks, I drop civil conflicts that began coup attempts.69 The dynamics of coups are arguably quite different from other types of civil war, and they are associated with significantly less terrorism.70

Because the dependent variables are counts (of incident or fatalities) for which by far the most common value is zero, I employ a zero-inflated negative binomial (ZINB) model. ZINB regression consists of two models: an inflate model estimating whether the DV is zero, and a count model estimating the number of incidents or fatalities. This allows us to separate effects on whether terrorism is used at all, and on how much it is used, which may be generated by different processes. But ZINB results must be interpreted with care across the two models because a positive coefficient for the inflate model means a positive association with zero incidents, i.e., a negative effect on terrorism, while a positive coefficient for the count model indicates a positive association with terrorism. With the exception of three sets of categorical

67 Kalyvas and Balcells 2010 argue that the Cold War helped rebels more than states, on balance. Others have found that there was a decrease in terrorism after the Cold War. Enders and Sandler 1999 and Chenoweth 2010.

68 A dummy covering GTD’s current home at START from 2013 drops out due to colinearity.

69 I code a coup if two out of three of the following sources indicated a coup: CGS’s coding of conflict type, which provides a non-exhaustive list of coups (Cunningham et al. 2009; 2013); Powell and Thyne 2011; and Polity IV’s data on coups d’etat. Marshall and Marshall 2016.

70 [See results in online appendix.]
variables (rebel strength, fighting capacity, and mobilization capacity) in which high and low
dummies are compared to a middle category, the independent variables are all set up such that
larger values denote weaker rebels. Therefore, the expectation of the weapon of the weak
hypotheses is that coefficients should be negative in the inflate model and positive in the count
model. The same is true of the weakest or lowest value of the categorical variables, and the
opposite holds for the strongest/highest category. Robust standard errors are calculated with
cases clustered by conflict.

Table 1A reports full results including for the control variables, but these are omitted
from subsequent tables as results are substantively similar. In the interest of space, Tables 1-5
report models using version B and the less restrictive measure of the dependent variable. Table 6
summarizes the results across all eight versions of the dependent variable, indicating (Yes or No)
whether the coefficient is in the direction expected by the relevant weapon of the weak
hypothesis, and whether and at what level the coefficient is statistically significant. Additional
results for robustness checks, including an alternative measure of conflict intensity, dropping the
al Qaida case, and dropping coups, are available in the [online appendix]. Results are
substantively the same in robustness checks unless discussed below.

Results

The most straightforward weapon of the weak hypothesis (H1) suggests that the lower the
military capability of the rebels, relative to the government, the more terrorism is likely to be
used. The results in Table 1a and the top row of Table 6 show mixed support for this hypothesis.

71 H1a expects negative coefficients for measures of weakness in both models.
When the 5-point ordinal measure of rebel weakness is used, we see that the count portion of the ZINB models is in the expected direction for terrorist incidents, but is significant only for version E of the UCDP group-GTD perpetrator matching. The inflate portion of the model for terrorist incidents is generally not even in the expected direction. Examining the number of fatalities from terrorist attacks, we see even less support for the basic weapon of the weak hypothesis: coefficients are generally but not always in the expected direction and are never significant.

If we break this categorical variable up into dummy variables, we see no significant difference between the most common mid-level category and the very weakest rebels. For terrorist incidents, coefficients in the count models are consistently in the expected direction but not in the inflate models, and the reverse is true for terrorist fatalities. None pass the standard $p \leq .05$ level of significance, and in only one model (version E, more restrictive) is there even marginal significance. However, we do see a significant effect when we compare the rare rebel groups (comprising only 7% of dyad-years) who are at least as strong as the governments they fight. But even here, coefficients are only significant for the number of incidents (even if no one is killed in them), and only for the count portion of the ZINB models. The strongest rebels are no less likely to commit at least one terrorist incident (in fact the sign of the coefficients suggests the opposite), but they are responsible for significantly fewer attacks. The same cannot be said if we count fatalities, however. Here, coefficients are all in the expected direction, but not statistically significant.

[Table 1a about here]

As an alternate measure of relative strength, I examine fighting capacity rather than the composite measure of which it is part. For the ordinal fighting capacity variable, the results (in
Tables 1b and 6) are roughly similar, with coefficients in the correct direction and significant in some versions of the count models for terrorist incidents, but weaker results for fatalities. The comparison of low fighting capacity groups to mid-level groups is similar – we see significant coefficients only for the count models of terrorist incidents and only when version E of the group matching is used. But when we compare high fighting capacity groups with mid-level groups, the results appear stronger for the weapon of the weak hypothesis. Here we see consistently significant effects for the count models when we examine fatalities, and fairly consistently significant effects for count models of incidents. We do not, however, see significant effects for the inflate models.

High fighting capacity groups are quite rare in the data, representing only 1% of observations and only 12 rebel groups. Most of these groups fight short-lived conflicts, and many of these are coups attempts. The results for fighting capacity are slightly weaker if cases of coups are dropped from the analysis.

[Table 1b about here]

In sum, we see at best mixed, and not terribly robust, support for the primary weapon of the weak hypothesis. It garners the most support with the fighting capacity measure, but as noted above, this is the measure most likely susceptible to endogeneity in the coding, and the result is driven by a small number of outlier cases (seven cases of high fighting capacity groups that are not engaged in coup attempts). Nor do we see support for H1a which expects weaker groups to be more likely to employ terrorism but to kill fewer people.

Hypothesis 2 concerns the military strength of the state. In Table 2 and the second section of Table 6, we see the expected negative coefficients in the inflate models, and these are
significant when we measure terrorism as the number of incidents, but not as fatalities.
Moreover, coefficients are not in the expected direction for count models. Rebels facing more powerful states appear to be less likely to eschew terrorism altogether, as the weapon of the weak hypothesis would predict, but no more likely to be responsible for many incidents, nor to kill more people through terrorism.

As shown in Tables 2 and 6, results are substantively similar if we use military personnel as a measure of state strength. They are slightly stronger if military expenditures are used (here coefficients are more consistently in the expected direction, and are marginally significant for inflate models of fatalities). Not surprisingly, there is slightly less support for this hypothesis in robustness checks (results not shown) when the outlier US-al Qaida case is dropped, or when coups are dropped.

As Table 3 and the third and fourth sections of Table 6 indicate, hypotheses 3 and 4 are not supported. Rough terrain is hypothesized (H3) to make it easier for rebels to conduct insurgency, making terrorism less likely. The coefficients for flatter terrain are sometimes in the expected direction, but not consistently so, and are never significant. If anything, rebels fighting in less forested terrain are less likely to engage in terrorism rather than more. Coefficients for territorial control (H4) are generally in the correct direction, but are not statistically significant. They also flip signs in some models when the US-al Qaida case is dropped. In short, we see no significant effect of territorial control. We can thus reject hypotheses that rebels use less terrorism when they enjoy the rough terrain that favors insurgency, or when they control territory.
Hypothesis 5 suggests that the less popular support for the rebel group, the more it will resort to terrorism. Using mobilization capacity as a proxy, we see no evidence for this hypothesis, indeed, if anything, the opposite is true (Tables 4 and 6). There is no significant difference between groups with low mobilization capacity and those with medium mobilization capacity, and the coefficient is often in the wrong direction. High mobilization capacity groups are responsible for more terrorist incidents rather than fewer (and this unexpected relationship is significant for the less restrictive measure of deliberately indiscriminate targeting). In the count models for fatalities, the coefficient is generally in the direction expected by the weapon of the weak hypothesis, but is only marginally significant (p=.06) in one model (more restrictive measure, version B) and is not at all robust to other measures. This hypothesis fares better when we use the ACD2EPR measure of support for rebels among the relevant ethnic group. We continue to see no consistent or significant effect on terrorist incidents, but for fatalities, coefficients are consistently in the correct direction and are sometimes (especially for version B) statistically significant. We see stronger effects on the fatalities count than in the inflate model. It is notoriously difficult to measure popular support for groups that are by their nature illegal and often clandestine. But the common notion that militant groups that cannot mobilize widespread support are most likely to employ terrorism is at best only partially supported by the available data. Among ethnic conflicts, unpopular rebels kill more people in terrorist attacks, but are not necessarily more likely to turn to terrorism at all, and this finding is not robust to different proxies for popular support.

[Table 4 about here]

Hypothesis 6 suggests that terrorism is used by groups early on in their struggle, before
they become strong enough to wage full-scale guerrilla war against a state’s military.

Coefficients are in the direction expected by this hypothesis for the count models, though these are significant only for the number of fatalities, not incidents (Table 5 & 6 [section 6]). Moreover, these results do not hold up when the US-al Qaida case, with its unusually high fatality count at the very start, is dropped (not shown). Coefficients are in the opposite direction for the inflate models, significantly so for fatalities.

Because the selection of active conflict years may bias against this hypothesis, I also compare levels of terrorism in the earliest years of a conflict, to those after it crosses the threshold of 25 battle deaths. Lack of data for years in which UCDP conflicts are active for some control variables makes multivariate analysis difficult, but bivariate difference of means tests show no support for the notion that groups use terrorism before they “graduate” to insurgency. Figure 2 shows the means, including confidence intervals, for both incidents (top) and fatalities (bottom) comparing active and prewar years (version B, least restrictive measure shown). Levels of terrorism are significantly (p<.0001) lower in the prewar years than in years of active conflict, and this is true for all versions of the dependent variable. That this is true despite the fact that inclusion of prewar observations is biased toward finding higher levels of terrorism in this set of observations gives us more confidence that H6 does not hold water.

I find even less support for the commonly expressed idea that groups turn to terrorism out of desperation when they are on the verge of defeat (H7a). Table 5 shows results for measures of

72 When prewar years are compared to all other observations (including lulls and postwar years), the difference is smaller, but nonetheless significant (p<.01 except for matching level E, most restrictive, where p=.06).
whether a group is within two years of defeat by the government. Coefficients are in the expected direction for the count model of fatalities, but are in the opposite direction for the inflate model and for terrorist incidents (both sets of models), often significantly so. Coefficients are consistently in the wrong direction, and again often significant if we include cases that end in “low activity” in our measure of defeat (Table 6). Results are even worse for the verge of defeat hypothesis if we look only at the year of defeat or that year and one year prior (results not shown). Rebels on the verge of defeat appear to be less likely to employ terrorism, not more so.

As noted above, this measure is problematic, as it misses cases in which a rebel group succeeds in avoiding imminent defeat by resorting to terrorism, but we do not see any evidence that groups turn to terrorism out of desperation as they are about to lose. The results are similar for Hypothesis 7b, which suggests that we will see more terrorism toward the end of conflicts, as groups turn to it after failing with other tactics. Coefficients are all in the wrong direction (that is, they are negative for the count models and positive for the inflate models), often significantly so. This may be accounted for by the fact that civil wars in which terrorism is used last significantly longer than others. There is no evidence that rebels become more likely to turn to terrorism as the conflict drags on and other methods have failed.

As we can see from the summary of results in Table 6, support for the various versions of

73 Inflated model coefficients for verge of defeat and late stages of the conflict are less likely to run in the wrong direction or to be significant when they do when the analysis controls for coups. Coups tend to be short-lived, so are dominated by observations close to the end of the conflict, and as noted above, are unlikely to experience terrorism.

74 Fortna 2015.
the weapon of the weak argument ranges from none to tenuous or partial at best. For no measure of rebel weakness is there consistent, significant, and robust support. This is particularly notable given that a number of modeling and data choices were made to bias results in favor of weapon of the weak arguments, including the inclusion of a non-civil war case (al Qaida), the inclusion of coups, and the reporting of the set of models that robustness checks show to be the most favorable to the conventional wisdom (e.g., the blunter control for war intensity). That is, the results not shown evidence even less support for weapon of the weak arguments than those shown here.

[Table 6 about here]

Overall, we see remarkably little support for weapon of the weak hypotheses. But some variants fare better than others. There is some indication that exceptionally strong rebels are responsible for fewer attacks and fatalities. Rebels fighting stronger governments are also more likely to engage in terrorism, but not necessarily high levels of it. Among ethnic conflicts, groups with less popular support kill more people with terrorism, but are not necessarily more likely to turn to terrorism in the first place. On the other hand, we see no support for notions that rough terrain or territorial control affect the use of terrorism, nor for the idea that rebels use terrorism early in their fight before graduating to other methods, or conversely, out of desperation on the verge of defeat or after other methods have failed.

Turning briefly to the control variables (see Table 1a), we see strong and consistent effects for regime type on terrorist incidents, consistent with the literature. Rebels are more likely to use terrorism against democratic governments and to use more of it. If we count terrorism by fatalities, we see the same results in inflate models, but less consistent support in
count models. Rebel groups fighting democratic governments are more likely to employ terrorism, including fatal attacks, but whether their terrorism is more deadly overall is less clear. These findings suggest that future research should explore differences in effects on incidents vs. fatalities.

The effects of external support for rebels are much less consistent across model specification and are often insignificant. Coefficients are generally positive in the count models, and these are sometimes (particularly for fatalities) significant, but there is little consistency and no significant effects for inflate models. Those with external backing may kill more civilians through deliberately indiscriminate targeting, but they are not necessarily more likely to use terrorism overall. To the extent that external support strengthens rebels, this finding is further evidence against the weapon of the weak hypothesis.

Not surprisingly, we see higher terrorism counts (both incidents and fatalities) in major wars than in minor armed conflicts. Coefficients in inflate models are consistently negative, though not always significant. This is as we would expect – rebel groups may use terrorism in both minor and major conflicts, but the number of attacks and fatalities is higher in full-scale civil wars.75

The effect of incompatibility – whether the war is fought over territory or government control – type is similar. We see no clear difference in whether rebels resort to terrorism at all, but groups fighting over government issues are responsible for higher levels of terrorism compared to those fighting over territory. This runs counter to the conventional wisdom that

75 When battle deaths are used to measure intensity, coefficients in both the count and inflate models are consistently positive, generally but not always significantly so (results not shown).
those fighting to free what they perceive as their homeland are more likely to use terrorism. 76

Finally, while the association between the Cold War and the number of terrorist incidents is not terribly robust across models, the general pattern is negative coefficients in the count modelsm and positive (often but not always significant) coefficients in the inflate models. We cannot make strong claims about this relationship, but if anything, we see rebel groups resorting to terrorism less during the Cold War than in the decade after.77 Nor do we see strong or consistent effects for GTD collection periods. But coefficients for these period dummies are sometimes significant, suggesting that it is important to include these controls.

Caveats

Two important caveats should be reiterated. First, while civil conflicts provide the necessary variation to test arguments about when and under what circumstances groups will use terrorism, and this study includes very low-levels of conflict, it excludes groups so weak they cannot mount a fight that ever meets the 25 battle death threshold. The very weakest of the weak are thus selected out. Among organized militant groups that can cross this low threshold, we can conclude that weapon of the weak arguments evidence little support. But we cannot rule out the possibility that at the very lowest end of the strength continuum, terrorism might be more likely than in the portions of the continuum examined here. Assessing this claim requires data on organizations (whether or not they use terrorism) below this low threshold.

76 See for example, Pape 2003; 2005.

77 To the extent that the hypothesized effect here was driven by an argument about the effect of the Cold War on the relative strength of rebels and governments (Kalyvas and Balcells 2010), this non-finding is further evidence against the weapon of the weak argument.
Second, as is generally true in cross-national studies of civil conflicts, some of the measures and proxies used here are far from perfect. For example, relative strength, while ostensibly varying annually, is actually quite a bit more static than the reality it purports to measure; measures of groups on the verge of defeat omit those whose gamble for resurrection actually works (though empirical examples of this ploy working are lacking). Measurement error in independent variables can bias results toward null findings. It is possible that terrorism is in fact a weapon of the weak, but our measures preclude seeing that in the data. Better data may yet prove the conventional wisdom correct. However, we do not see stronger evidence for weapon of the weak arguments in the measures in which we might have more confidence (e.g. rough terrain or territorial control), nor can poor measures account for findings that suggest a negative relationship (as opposed to a negligible one) between weakness and terrorism.

Conclusion

These caveats notwithstanding, we see astonishingly little empirical support for the deeply seated conventional wisdom that terrorism is a weapon of the weak. For some authors, of course, this notion is true by definition. But if we take weapon of the weak arguments to be non-tautological explanations for why some groups resort to terrorism while others do not, we should expect to see a positive relationship between various aspects of group weakness and the decision to target civilians in deliberately indiscriminate ways. In this paper, I have endeavored to spell out what people mean by “weak” when they say that terrorism is a weapon of the weak. For some, it is a matter of relative military capability – that militarily weaker groups, relative to the governments they fight, should be more likely to resort to terrorism. By the same logic, those
fighting more powerful and militarily capable states should use more terrorism. There is limited support for these arguments. The rare rebel group that reaches parity with government forces, and the very highest capacity fighters are less likely to use terrorism, but for the vast majority of groups, relative strength has little discernable effect. Groups fighting stronger governments appear more likely to turn to terrorism, but are not necessarily responsible for more incidents or fatalities. There is also partial support for the argument that groups weak in popular support use more terrorism.

Meanwhile, arguments that rebels who enjoy the advantages of rough terrain or who control territory should use less terrorism are not supported in the data. Nor are arguments that terrorism is more likely early on in a conflict, before a group gains enough strength to wage insurgency, or conversely, toward the end of conflict after other methods fail or in desperation by a group on the verge of defeat.

More testing with better measures is clearly necessary. But this study raises serious doubts about a deeply held conventional wisdom. Empirically, arguments that terrorism is a weapon of the weak are weakly supported at best.
References

Figure 1: Distribution of the Dependent Variable
Figure 2: Terrorism in Prewar vs. Active Years (H6)
(Version B, Least Restrictive Measure Shown)
Table 1A. Relative Military Strength and Terrorism (H1)

<table>
<thead>
<tr>
<th></th>
<th>Count Incidents</th>
<th>Count Fatalities</th>
<th>Inflated Incidents</th>
<th>Inflated Fatalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rebel Weakness (Ordinal)</td>
<td>0.437</td>
<td>0.044</td>
<td>0.136</td>
<td>-0.329</td>
</tr>
<tr>
<td></td>
<td>(0.35)</td>
<td>(0.20)</td>
<td>(0.93)</td>
<td>(0.25)</td>
</tr>
<tr>
<td>Much Weaker (Dummy)</td>
<td>0.276</td>
<td>-0.009</td>
<td>0.333</td>
<td>-0.139</td>
</tr>
<tr>
<td></td>
<td>(0.24)</td>
<td>(0.22)</td>
<td>(0.67)</td>
<td>(0.34)</td>
</tr>
<tr>
<td>Stronger (Dummy)</td>
<td>-1.428**</td>
<td>-0.370</td>
<td>-0.685</td>
<td>0.843</td>
</tr>
<tr>
<td></td>
<td>(0.52)</td>
<td>(0.34)</td>
<td>(2.77)</td>
<td>(0.74)</td>
</tr>
<tr>
<td>Regime Type</td>
<td>0.165***</td>
<td>0.162***</td>
<td>0.035</td>
<td>0.034</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>External Support</td>
<td>0.246</td>
<td>0.272</td>
<td>0.387*</td>
<td>0.396*</td>
</tr>
<tr>
<td></td>
<td>(0.26)</td>
<td>(0.25)</td>
<td>(0.19)</td>
<td>(0.19)</td>
</tr>
<tr>
<td>Incompatibility (Gov)</td>
<td>1.073***</td>
<td>1.085***</td>
<td>0.738**</td>
<td>0.749**</td>
</tr>
<tr>
<td></td>
<td>(0.26)</td>
<td>(0.26)</td>
<td>(0.25)</td>
<td>(0.25)</td>
</tr>
<tr>
<td>Major War</td>
<td>1.234***</td>
<td>1.301***</td>
<td>1.648***</td>
<td>1.662***</td>
</tr>
<tr>
<td></td>
<td>(0.20)</td>
<td>(0.21)</td>
<td>(0.19)</td>
<td>(0.20)</td>
</tr>
<tr>
<td>Cold War (1970-1989)</td>
<td>-0.041</td>
<td>-0.057</td>
<td>0.009</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>(0.22)</td>
<td>(0.21)</td>
<td>(0.15)</td>
<td>(0.15)</td>
</tr>
<tr>
<td>GTD2 (1998 - 2007)</td>
<td>-0.542*</td>
<td>-0.567*</td>
<td>0.196</td>
<td>0.192</td>
</tr>
<tr>
<td></td>
<td>(0.25)</td>
<td>(0.25)</td>
<td>(0.20)</td>
<td>(0.20)</td>
</tr>
<tr>
<td>GTD3 (2008 - 2011)</td>
<td>0.299</td>
<td>0.346</td>
<td>0.430</td>
<td>0.429</td>
</tr>
<tr>
<td></td>
<td>(0.36)</td>
<td>(0.32)</td>
<td>(0.26)</td>
<td>(0.26)</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.652</td>
<td>0.742*</td>
<td>2.285**</td>
<td>2.448***</td>
</tr>
<tr>
<td></td>
<td>(1.38)</td>
<td>(0.36)</td>
<td>(0.86)</td>
<td>(0.35)</td>
</tr>
<tr>
<td>lnalpha</td>
<td>0.843***</td>
<td>0.859***</td>
<td>0.800***</td>
<td>0.799***</td>
</tr>
<tr>
<td></td>
<td>(0.23)</td>
<td>(0.23)</td>
<td>(0.14)</td>
<td>(0.15)</td>
</tr>
<tr>
<td>N</td>
<td>1592</td>
<td>1592</td>
<td>1592</td>
<td>1592</td>
</tr>
</tbody>
</table>

DV: Version B, least restrictive; Robust Standard Errors (clustered on conflict) shown in parentheses.

* p<.05; ** p<.01; *** p<.001
Table 1B. Relative Fighting Capacity and Terrorism (H1)

<table>
<thead>
<tr>
<th></th>
<th>Count Incidents</th>
<th>Count Fatalities</th>
<th>Inflate Incidents</th>
<th>Inflate Fatalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>FightCapacity</td>
<td>0.758</td>
<td>-0.131</td>
<td>-0.401</td>
<td>-0.737</td>
</tr>
<tr>
<td></td>
<td>(0.419)</td>
<td>(0.322)</td>
<td>(0.908)</td>
<td>(0.422)</td>
</tr>
<tr>
<td>LowFightCapacity</td>
<td>0.744</td>
<td>-0.131</td>
<td>-0.420</td>
<td>-0.708</td>
</tr>
<tr>
<td></td>
<td>(0.400)</td>
<td>(0.321)</td>
<td>(0.892)</td>
<td>(0.464)</td>
</tr>
<tr>
<td>HighFightCapacity</td>
<td>-1.867**</td>
<td>-1.378***</td>
<td>-1.219</td>
<td>0.972</td>
</tr>
<tr>
<td></td>
<td>(0.656)</td>
<td>(0.249)</td>
<td>(1.204)</td>
<td>(1.324)</td>
</tr>
</tbody>
</table>

Controls not shown (regime type, external support, incompatibility, major war, cold war, GTD period)

<table>
<thead>
<tr>
<th></th>
<th>lnalpha</th>
<th>lnalpha</th>
<th>lnalpha</th>
<th>lnalpha</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.777***</td>
<td>0.774***</td>
<td>0.794***</td>
<td>0.784***</td>
</tr>
<tr>
<td></td>
<td>(0.184)</td>
<td>(0.178)</td>
<td>(0.145)</td>
<td>(0.144)</td>
</tr>
</tbody>
</table>

N 1572 1572 1572 1572

DV: Version B, least restrictive; Robust Standard Errors (clustered on conflict) shown in parentheses.

* p<.05; ** p<.01; *** p<.001

Table 2. State Capacity and Terrorism (H2)

<table>
<thead>
<tr>
<th></th>
<th>Count Incidents</th>
<th>Count Fatalities</th>
<th>Inflate Incidents</th>
<th>Inflate Fatalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>CINCScore</td>
<td>-0.236</td>
<td>-0.014</td>
<td>-0.731**</td>
<td>-0.276</td>
</tr>
<tr>
<td></td>
<td>(0.12)</td>
<td>(0.11)</td>
<td>(0.24)</td>
<td>(0.29)</td>
</tr>
<tr>
<td>Military</td>
<td>-0.240</td>
<td>-0.052</td>
<td>-0.667**</td>
<td>-0.298</td>
</tr>
<tr>
<td>Personnel</td>
<td>(0.15)</td>
<td>(0.12)</td>
<td>(0.22)</td>
<td>(0.20)</td>
</tr>
<tr>
<td>Military</td>
<td>-0.025</td>
<td>0.050</td>
<td>-0.469*</td>
<td>-0.212</td>
</tr>
<tr>
<td>Expenditures</td>
<td>(0.09)</td>
<td>(0.08)</td>
<td>(0.21)</td>
<td>(0.12)</td>
</tr>
</tbody>
</table>

Controls not shown (regime type, external support, incompatibility, major war, cold war, GTD period)

<table>
<thead>
<tr>
<th></th>
<th>lnalpha</th>
<th>lnalpha</th>
<th>lnalpha</th>
<th>lnalpha</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.791***</td>
<td>0.803***</td>
<td>0.835***</td>
<td>0.901***</td>
</tr>
<tr>
<td></td>
<td>0.877***</td>
<td>0.815***</td>
<td>(0.17)</td>
<td>(0.17)</td>
</tr>
<tr>
<td></td>
<td>0.18</td>
<td>(0.25)</td>
<td>(0.19)</td>
<td>(0.15)</td>
</tr>
</tbody>
</table>

N 1514 1491 1396 1514 1491 1396

DV: Version B, least restrictive; Robust Standard Errors (clustered on conflict) shown in parentheses.

* p<.05; ** p<.01; *** p<.001
Table 3. Rough Territory and Terrorism (H3); and Territorial Control and Terrorism (H4)

<table>
<thead>
<tr>
<th></th>
<th>Count Incidents</th>
<th>Count Fatalities</th>
<th>Inflate Incidents</th>
<th>Inflate Fatalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mountains</td>
<td>-0.005</td>
<td>0.003</td>
<td>-0.023</td>
<td>-0.009</td>
</tr>
<tr>
<td>(inverted)</td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>Forests</td>
<td>-0.001</td>
<td>-0.011*</td>
<td>0.040*</td>
<td>0.016</td>
</tr>
<tr>
<td>(inverted)</td>
<td>(0.01)</td>
<td>(0.00)</td>
<td>(0.02)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>Territorial Control</td>
<td>0.221</td>
<td>0.087</td>
<td>0.130</td>
<td>-0.208</td>
</tr>
<tr>
<td></td>
<td>(0.24)</td>
<td>(0.21)</td>
<td>(0.44)</td>
<td>(0.38)</td>
</tr>
</tbody>
</table>

Controls not shown (regime type, external support, incompatibility, major war, cold war, GTD period)

lnalpha
0.853*** 0.884*** 0.827*** 0.824*** 0.781*** 0.821***
(0.19) (0.25) (0.17) (0.17) (0.18) (0.16)

N 1579 1579 1589 1579 1579 1589

DV: Version B, least restrictive; Robust Standard Errors (clustered on conflict) shown in parentheses.

* p<.05; ** p<.01; *** p<.001

Table 4. Popular Support and Terrorism (H5)

<table>
<thead>
<tr>
<th></th>
<th>Count Incidents</th>
<th>Count Fatalities</th>
<th>Inflate Incidents</th>
<th>Inflate Fatalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobilization</td>
<td>-0.027</td>
<td>0.061</td>
<td>0.629</td>
<td>0.133</td>
</tr>
<tr>
<td>Capacity (Ord)</td>
<td>(0.18)</td>
<td>(0.17)</td>
<td>(0.48)</td>
<td>(0.28)</td>
</tr>
<tr>
<td>Low Mob Cap</td>
<td>0.324</td>
<td>-0.058</td>
<td>0.691</td>
<td>-0.060</td>
</tr>
<tr>
<td>(Dummy)</td>
<td>(0.23)</td>
<td>(0.27)</td>
<td>(0.50)</td>
<td>(0.33)</td>
</tr>
<tr>
<td>High Mob Cap</td>
<td>0.772*</td>
<td>-0.492</td>
<td>-0.778</td>
<td>-0.879</td>
</tr>
<tr>
<td>(Dummy)</td>
<td>(0.39)</td>
<td>(0.35)</td>
<td>(1.76)</td>
<td>(0.96)</td>
</tr>
<tr>
<td>Low Popular Support (ethnic)</td>
<td>0.122</td>
<td>0.784**</td>
<td>0.137</td>
<td>0.582</td>
</tr>
<tr>
<td>(Dummy)</td>
<td>(0.31)</td>
<td>(0.24)</td>
<td>(1.03)</td>
<td>(0.39)</td>
</tr>
</tbody>
</table>

Controls not shown (regime type, external support, incompatibility, major war, cold war, GTD period)

lnalpha
0.839*** 0.813*** 0.875** 0.842*** 0.848*** 0.718***
(0.18) (0.18) (0.33) (0.17) (0.18) (0.18)

N 1570 1570 816 1570 1570 816

DV: Version B, least restrictive; Robust Standard Errors (clustered on conflict) shown in parentheses.

* p<.05; ** p<.01; *** p<.001
Table 5. Early Stages and Terrorism (H6); Verge of Defeat and Late Stages of the War and Terrorism (H7)

<table>
<thead>
<tr>
<th></th>
<th>Count</th>
<th>Inflated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Incidents</td>
<td>Fatalities</td>
</tr>
<tr>
<td>Early Stages</td>
<td>0.004 (0.01)</td>
<td>0.020* (0.01)</td>
</tr>
<tr>
<td>Verge of Defeat (within 2 years)</td>
<td>-0.606 (0.35)</td>
<td>0.235 (0.31)</td>
</tr>
<tr>
<td>Late Stages</td>
<td>-0.047 (0.03)</td>
<td>-0.059* (0.03)</td>
</tr>
</tbody>
</table>

Controls not shown (regime type, external support, incompatibility, major war, cold war, GTD period)

| lnalpha | 0.887** (0.28) | 0.797*** (0.18) | 0.982*** (0.17) | 0.771*** (0.15) | 0.806*** (0.15) | 0.789*** (0.14) |
| N | 1594 | 1578 | 1476 | 1594 | 1578 | 1476 |

DV: Version B, least restrictive; Robust Standard Errors (clustered on conflict) shown in parentheses.
* p<.05; ** p<.01; *** p<.001
Table 6. Summary of Results

<table>
<thead>
<tr>
<th></th>
<th>Terrorist Incidents</th>
<th></th>
<th>Fatalities from Terrorism</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Count</td>
<td>Inflate</td>
<td>Count</td>
<td>Inflate</td>
</tr>
<tr>
<td></td>
<td>Less Restrictive</td>
<td>More Restrictive</td>
<td>Less Restrictive</td>
<td>More Restrictive</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>E</td>
<td>B</td>
<td>E</td>
</tr>
<tr>
<td>Rebel weakness (ordinal)</td>
<td>Y</td>
<td>Y*</td>
<td>Y</td>
<td>Y**</td>
</tr>
<tr>
<td>much weaker (dum)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y†</td>
</tr>
<tr>
<td>stronger (dum)</td>
<td>Y**</td>
<td>y***</td>
<td>Y**</td>
<td>Y***</td>
</tr>
<tr>
<td>Fighting capacity (ordinal)</td>
<td>Y†</td>
<td>Y†</td>
<td>Y†</td>
<td>Y†</td>
</tr>
<tr>
<td>low fight cap (dum)</td>
<td>Y†</td>
<td>Y*</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>high fight cap (dum)</td>
<td>Y**</td>
<td>Y***</td>
<td>Y†</td>
<td>Y†</td>
</tr>
<tr>
<td>State capacity (CINC)</td>
<td>N†</td>
<td>N</td>
<td>N†</td>
<td>N</td>
</tr>
<tr>
<td>Mil. personnel</td>
<td>N</td>
<td>N</td>
<td>N†</td>
<td>N</td>
</tr>
<tr>
<td>Mil. expenditures</td>
<td>N</td>
<td>y</td>
<td>Y</td>
<td>y†</td>
</tr>
<tr>
<td>Mountains (inverted)</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Forests (inverted)</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>No territorial control</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y†</td>
</tr>
<tr>
<td>Mobilization cap (ord)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>low mob cap</td>
<td>Y</td>
<td>y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>high mob cap</td>
<td>N*</td>
<td>N*</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Low popular support</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Early stages</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Verge defeat (t-2)</td>
<td>N†</td>
<td>N*</td>
<td>N</td>
<td>N†</td>
</tr>
<tr>
<td>Verge defeat LA (t-2)</td>
<td>N**</td>
<td>N***</td>
<td>N†</td>
<td>N***</td>
</tr>
<tr>
<td>Late stage</td>
<td>N</td>
<td>N†</td>
<td>N*</td>
<td>N</td>
</tr>
</tbody>
</table>

Y indicates coefficients in the direction expected by weapon of the weak arguments; N indicates coefficients in the opposite direction
Significance levels: † p ≤ .10; * p ≤ .05; ** p ≤ .01; *** p ≤ .001